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THEORY OF THE VIBRATIONS OF THE SODIUM
CHLORIDE LATTICE

By E. W. KELLERMANN, D.PaiL., Pu.D.
University of Edinburgh

(Communicated by M. Born, F.R.S.—Received 26 October 1939)

INTRODUCTION

The interest in the frequency spectrum of the thermal vibrations in a crystal arose
chiefly in connexion with the problem of the specific heat of crystals at low tem-
peratures. Debye’s theory of the specific heat, however, has been so successful that the
actual determination of the frequency spectrum according to Born and v. Kdrméan
(1912) has been pushed into the background. But recent investigations, especially those
of Blackman (1935, 1937 4, b, 1938), have shown that appreciable deviations from Debye’s
theory should occur according to the correct atomistic treatment. These deviations
appear to be most pronounced near the absolute zero of temperature. It, therefore,
seemed desirable to calculate the exact frequency spectrum of a crystal.

The first attempt to calculate the frequency spectrum of a crystal was made by
Born and v. Karman in their original paper. They assumed only quasi-elastic forces
between neighbouring particles. Later calculations have been made for ionic lattices,
for which we have a fair knowledge of the real forces which determine the equilibrium
positions and the vibrations about them. The chief difficulty in that calculation has
always been the long range of the Coulomb force which makes a direct summation over
all lattice points impossible.

Born and Thompson (1934), using a method developed by Ewald (1921), suggested
a way of transforming these sums into more rapidly convergent expressions, and
Thompson (1935) has given the final formulae for the coupling coefficients due to the
Coulomb force in the equation of motion, but in his paper a slight mistake occurred in
the definition of the coefficients, and so far no numerical results of these calculations
have been published. Broch (1937) has given formulae for the case of a one-dimensional
lattice making use of Epstein’s Zeta functions. Lyddane and Herzfeld (1938) have
used an extension of Madelung’s method (1918) and they have given some numerical
results, but their formulae are rather complicated, so that one cannot expect to compute
the whole frequency spectrum by this method. Moreover, the problem of the thermal
oscillations of an ionic lattice is not a purely electrostatic problem, and this point has
not been made sufficiently clear by Lyddane and Herzfeld. Their treatment of the
case of the residual rays is open to objection, and the question whether the potential,
from which the coupling coefficients are obtained, satisfies the Laplace equation or
Poisson’s equation is not clear.
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514 E. W. KELLERMANN ON THE THEORY OF THE

In this paper I have used Ewald’s method mentioned above, in a new form given
by him in a recent paper (1938). By this method one obtains comparatively simple
and quickly convergent expressions for the coupling coefficients in the equation of
motion which allow a numerical calculation to an arbitrary degree of accuracy.
Because of the good convergence it has not been too laborious to compute numerical
values for 48 different modes of vibration.

In § 2 the derivation of these expressions is given by treating the problem as an
electrostatic problem, neglecting the retardation; but the proper way of solving the
problem is to find a solution of Maxwell’s equation for the electromagnetic field in
the crystal. This will be done in § 3. From this field the force exerted on a particle and
the coupling coeflicients can be obtained (§ 4). It will be seen that in this proper
treatment the case of infinitely long waves plays a special role and must be considered
separately. In all the other cases this treatment leads to the same result as the electro-
static derivation. If one defines a potential function from which the coupling coeffi-
cients are obtained as second derivatives, this potential satisfies in general Laplace’s
equation; but in the special case of infinitely long waves it satisfies Poisson’s equation
with constant density.

In § 5 the coupling coeflicients for the NaCl lattice are given, and in § 6 the con-
tribution due to the repulsive forces is calculated.

In § 7 the equations for the coupling coeflicients are checked by deriving from them
formulae for the elastic constants.

The numerical values of the coefficients are given in § 8. In § 9 the corresponding
frequencies are calculated and illustrated by figures, and finally (§ 10) the resulting
distribution of the frequencies is discussed and the distribution curve is plotted.

1. THE EQUATION OF MOTION

I shall use the notation of Born’s Atomtheorie des festen Zustandes (1923); cf. also Born
and Goeppert-Mayer (1933).

The lattice vectors a;, a,, a; determine the cell of volume v,. The positions of the s
particles in the cell are represented by the basis vectors r, (k = 1,...s). The equili-
brium position of a particle («, /) is determined by the vector

F=al{F, al=/la,+la,+/la, (1-0)
[ stands for the three arbitrary integers [/, /,, /5. 'The distance vector between two
lattice points is given by
—alalfF, —a R P (11)
Considering small independent displacements uj, = (uf,, 4}, uf,) of each particle from

its equilibrium position, the vector between the displaced particles is

1w, pi=l 1 gl —ul .
Lo = Tee -+ U, — . (l 2)


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

VIBRATIONS OF THE SODIUM CHLORIDE LATTICE 515

Assuming only central forces, the total potential energy of the lattice is
=32 3 fue(lrec)- (1-3)
(The dash indicates that the terms /[ =/', x = «’ are omitted.) Neglecting surface

effects the energy density

1
Wl)—a ¢ (N = number of cells) (1-4)

remains finite, and the expansion of the energy in the neighbourhood of the equilibrium
position when developed in powers of the displacements u’ gives

G =Py+ B, + Byt ... (1-5)

In equilibrium the first-order terms vanish.
The second-order rterms

133 3 () (1-6)
where Bhh =030 )],
with the definition (B2%) ey = ——% ;’ (84 g >
lead to the equation of motion
My U — EZZ( )y ey = 05 (1-7)

where a dot denotes differentiation w1th regard to time and m, is the mass of the
particle of type k.

Considering one of the independent normal modes of vibration with frequency w,
wave-length A and wave vector K, £ = |k | = 1/A the displacements of the particles are

then ul = U, ¢mion o2, i) (1-8)
(the index 0 will be omitted in the following equations) and the equation of motion
becomes < i

0)2772 Uxx+22|: :lUK’yZ 07 (1‘9)
where I: :| L)y €250, (1-10)

From the definition (1-6) there follows

E[K K,] = 0. 1-11
« LX Y dk=0 ( )

The corresponding contributions of different forces to these bracket symbols (coeffi-
cients of the equation of motion) are additive. For example,

LT T (112

where C may denote the Coulomb forces and R the repulsive forces.
63-2
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516 E. W. KELLERMANN ON THE THEORY OF THE

The choice of the wave vectors k is restricted by the boundary condition of the
“cyclic lattice” (Born 1923, p. 588). It postulates that the displacement be periodic
in a volume having the same shape as the elementary cell and containing 73 = N cells.
To formulate this, introduce the base vectors b; of the reciprocal lattice

1
(ay b;) =3, by 20“[32><a3]’ b, =..., (1-13)
and the radius vector b, of this lattice,
b, = hb,+hyby+hsby  (k; arbitrary integers). (1-14)
Then the condition of cyclic behaviour leads to
k = b, = kb, -k by + kb, (115)
where ky=hyn, ky=hy/n, ky=hs/n (hy, hyy hy=0,1,...,n—1). (1-16)

2. THE COUPLING COEFFICIENTS OF THE ELECTROSTATIC INTERACTION

Consider now especially the case of electrostatic forces. Here the series (1-10) are
not absolutely convergent and have to be transformed into other series which corre-
spond to the physical conditions (neutral cell) and are quickly convergent.

Following Ewald (1921, 1938) I consider a lattice sum of the form

Fi(r) = 3 flr—al) ¢2mte, (2:0)
]
which can be written — Fk(r) = ¢27i%0 3 f(r —al) ¢2nilka-n (2-1)
1
and be considered as a periodic function which is modulated by a wave
exp{2mi(k, r)}.
The sum can then be represented by a Fourier series
Zj‘(r_al) p2mitk,al—r) _ z F}{ce%ri(bh, r), (22)
1 h
with the Fourier coeflicients
— 1 (= . 1_
= L (e ersrionrsor do = L, 1), (23)

where the integration extends over the whole of space and
F(b) = f FE) 200 dy, dy = diy drydcy, (2-4)

is the Fourier transform of f(r).
I apply the transformation (2-2) to the function

Fe) = ey [Ty de= . (25)
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VIBRATIONS OF THE SODIUM CHLORIDE LATTICE 517

It is then only necessary to determine @(b) from (2-4) and to insert it into (2-2) and
find Ewald’s well-known formula of the Theta function transformation (cf. Born

1923, p. 765)

(r) — Jﬂ l g€ r=ah242mi(k,al) %el - 7’;(bh+k)2+2ﬂi(bh+k,r). (2~6)
Applying this to the Coulomb potential
1
(pK'K(| r |) = eK’er(r)3 f(r) = I—T (27)

where ¢, is the charge of the xth type of particle at the lattice points r’, we obtain for
(1-10), since | —r,,,—a'| = |ri, |,

C[K K,:Ize,e lim 3 - f(r—d) e2mitred,  koti’
Xy SRR Ox (? ’

Tk L

C[i ;] _ e lrl_ir; [25 ay f(r —at) g2ritsah f( ):I

As a quickly convergent representation of the sums in (2-8) can be found, it is per-
missible to exchange differentiation and summation and to define a function

(2:8)

Fk(r) — Zlf(r__al) eZm’(k,al), (29)
82 & 32 1\ ,2mi(k,al) k
SO that (?WF (I‘) == Zlm‘f(r—a)e i, = ny(r), (2'10)
and since et PID

(cf. (1-0), (1-1)) one can write for the coupling coefficients (2-8)

Tk 7 _ 9 _al ik, al—r,)
[x y] — eKZl [0xt?yf (r—a) :Im“,e

— g e 0 2m0m) FE(r ), kKT (2:11)
R
s o] = atm s AL f =5

* It must be remembered that the term (9%,),, is defined by (1-6) and is not equal to

oS ® ]

which is infinite. (¢%,)., represents the force exerted on the particle (k, ) if it is displaced by a small
amount, all other particles being kept at their equilibrium positions. It can easily be shown that for
Coulomb forces and cubic symmetry this term vanishes.

(o] 4
T Thompson (1935) has not defined the coefficients [’; : :| correctly. He leaves out the exponential
function exp {—2mi(k, ry.)}-
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518 E. W. KELLERMANN ON THE THEORY OF THE

Now it is at once seen that the lattice sum F* (2-1), (2-6) is connected by (2-5) with
the lattice sum F* (2-9) from which the coeflicients are derived, namely,

f “Fr(r) de — F¥(x). (2:12)
0

Thus immediate use can be made of (2-6) for the transformation of the coupling
coeflicients. It should be noted that the sum in the first representation of F* in (2-6)
converges rapidly for large values of ¢ but not for small values, and the opposite holds
for the second representation. Therefore, following Ewald, I divide the integration

0 E ]
(2:12) into two parts f =J + f , taking as integrand in the first integral the second
o Jo JE

and in the second integral the first expression (2-6).
The integration yields

1 1 _m? 2po 1—~G(E|r~al\) e
k() — (b + )24 277 (b K, 1) 2mi(k, al) .
FHr) = o X it 2™ D , (2:13)
where G 1s Gauss’s function
2 X
_ *gz — .
G(x) Jﬂfoe dg, G(wo) =1. (2-14)

This expression (2-13) is very quickly convergent, as the arbitrary parameter £ can be

chosen in such a way that the two series £ and X converge rapidly, so justifying the
h l

interchange of differentiation and summation in (2-10).
Finally the differentiation (2:11) gives

F R e Rl
B [WE el [ 8 ) P e e ),
s [y B a ) e [ o) - F D] S ),
O g, v =L v =g

(2-15)

For k = 0 the zero term in F* (2-13) gives rise to a divergence so that the electrostatic
derivation breaks down. The reason is that the problem of describing the electro-
magnetic interaction in the crystal is not a purely electrostatic problem. One has to
bear in mind that because of the vibrations of the ions there will in general be an
electromagnetic field in the crystal. The proper way, therefore, of determining the
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C ’
coupling coeflicients I:I; I;] must be to start from Maxwell’s equations and to find

the proper solution of our problem. In the electromagnetic treatment, then, the
divergence encountered in the function F* for k = 0 will disappear.

3. THE ELECTROMAGNETIC FIELD OF THE CRYSTAL

Born (1923) has calculated the electromagnetic field of the crystal as originated
by a superposition of spherical waves arising from the vibrating point charges. (This
corresponds to the introduction of the “optical” instead of the electrostatic potentials
(cf. Ewald 1921).) Ishall give here the derivation as far as is necessary for our purposes.
From the electromagnetic field the forces acting on any particle and therefore the
coupling coeflicients will be obtained.

The result will be that the coefficients derived in this way will again be expressible
as the second derivatives of a potential function to which one can apply the same
transformation as used in the preceding section. It will be found that for all wave
vectors k # 0 the two potential functions are identical, so that the results of the preceding
section can be used without modification. In the case of infinitely long waves (k = 0)
which leads to the frequency of the residual rays, the electromagnetic derivation will
show that a modification of the potential function (2-13) is necessary. This can be
applied immediately by comparing the potential function obtained by the electro-
magnetic derivation, with the representation (2-13) of the electrostatic values with
E = oo0. This modification will remove the divergent term in the potential function
(2:13).

It may be surprising at first sight that the case of infinite waves has to be treated
separately and cannot be obtained as a limiting case of long waves. The reason for this
can easily be seen (cf. Born and Goeppert-Mayer 1933, p. 732). Starting from a finite
crystal with n3 = N cells and a finite wave-length A, one has to deal with a double limit:
N— o0 and A— 0. Now for finite wave-lengths and a finite crystal one has in general

ro<A<<nry, (rylattice constant).

Here one must proceed clearly first to the limit ¥ — co. For infinite wave-lengths,
on the other hand, one must first put A— co and then proceed to the limit N— co.
There is, of course, an intermediate region where A is of the order of the linear dimen-
sions of the crystal. But this region is negligibly small in the scale of the numbers
ky = hyfn, ky = hy[n, kg = hg/n (cf. (1-15), (1-16)), which are the components of the
wave vector K in the reciprocal lattice. For, if A is of the order / = nr, then £ = 1/A is
of the order £k~ 1/nry~ b/n, hence k,, k,, k; are of the order 1/~ 1078 for [ = 1 cm.
If the accuracy of the determination of £, £,, &5 is even as high as 1076, the region of the
waves of ““macroscopic dimensions”’ is not detectable and can be replaced by the point
k, =k, = ky = 0. There is an apparent discontinuity at k = 0, and it is therefore no
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520 E. W. KELLERMANN ON THE THEORY OF THE

contradiction that this point satisfies another equation than the rest of the spectrum.
For a detailed discussion of this discontinuity the knowledge of the electromagnetic
field will be needed.

The electromagnetic field can be represented (Born 1923, p. 761) by the field of
vibrating dipoles plus an electrostatic field, the latter of which does not give rise to a
force in lattices of cubical symmetry and for small displacements.

The moment of such a dipole is

eul, where ul=U_g vt g2ritir),
The field can be described by the Hertz vector
Z == S e"'i(t)i eZm‘(k,r)’ (3’0)

which is the sum of Hertz’s solutions for the various vibrating dipoles. The vector S
is a function of space. It has been determined by Born (1923); he finds

S=szS(r_—rK)) pKZeKUK’ (3.1)

1 £2mi(bp, 1)
0, % (b, + )T &2

where S is the Fourier series § =

1 0]
ky=~+=_-2.
0, 2mc
A, is the wave-length in vacuum corresponding to the frequency w,.
Now separate the zero term of the series (3-2) which represents the mean value of the

electromagnetic field

S =S435,
o1 1 1wk
 m k2—k mon2—1° (3:3)
- 1o, emitnn
S w2 (b, KR l

where the refractive index n = k/k, = 1,/A has been introduced.
The Hertz vector corresponding to the mean electromagnetic field is, according to
(3-1), (3-0), given by

= 1 n?fk?
Z=_"Po1 (3-4)
where P — P eivt g2miten
1 3:5)
PO :U—zpk. } (

P may be interpreted as the moment per unit volume.
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From the Hertz vector (3-4) the mean electromagnetic field vectors are obtained:

= 7 10%Z 1

E = grad leZ—"‘?W = 47T;lz—:i {P—nZS(P,S)},

= 1 0L (3:6)
,H—Zcurl?ﬁ =

4ﬂﬁgﬁ{sxPL ’
k= |Kk|s.

Here s is a unit vector in the direction of propagation of the wave.

These are the same formulae as those which one obtains as a solution of Maxwell’s
equations for a plane wave by putting B = H and splitting up D into E+4aP as has
been pointed out by Born and Goeppert-Mayer (1933, p. 776).

In order to discuss the formulae (3-6) one has to consider the magnitude of

n = klky = AJA

A A

SOCIETY

which will make it possible to distinguish between the two different cases £ = 0 and
k == 0.

The frequency of the fastest vibrations occurring in crystals is of the order 103 sec.™!,
and the corresponding smallest wave-length 1, = 1/k; ~ 1073 cm. This is very large
compared with the lattice distance (~ 1078 cm.). For the thermal vibrations of the
crystal one can consider the wave-length A as very small compared with the length 2,
of the light wave of the same frequency iz vacuo and can therefore put n = co. The
only exception is £ = 0; in this case z vanishes since 1/k, % 0 (cf. (3-2): o, = 0).

Therefore, in the case £ = 0 (3-6) becomes

E=—47P, H=0; k=0, k, not neglected, (3-7)

OF

and in the case £ &= 0
E=—4ns(P,s), H=0; £k=0,k,neglected. (3-8)

The value (3-0) for the Hertz vector developed here can be used for the solution of
the dynamical problem of the proper vibrations of the crystal only under the con-
dition that the system can be considered as closed, i.e. that there is no emission of
radiation. It will be seen, however, that this is the case for all values of £ except £ = 0.
In these cases (k = 0) the total moment of the crystal must vanish, since all the dipoles
in the crystal vibrate with a difference of phase which is not invariant against a trans-
lation of the lattice vector. That can be seen at once (cf. Born and Goeppert-Mayer
1933, p- 643) from the expression for the total moment itself

2P = 2200 = 3 e Uetmhr 3 g2mite 3, (3-9)
K K K

AL A

SOCIETY

This sum is zero for all values of k except k = 0.
I shall now show that our solution for the Hertz vector corresponds to this fact.
The optical properties of crystals have been carefully investigated by Ewald (cf. Born

OF

Vor. 238.—A 64
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522 E. W. KELLERMANN ON THE THEORY OF THE

1923, p. 774). Consider a crystal which is bounded on one side by a plane perpen-
dicular to the vector by, so that

(r, bs) >0, inside the crystal, |

. ‘ (3-10)
(r, b;) <0, outside the crystal. ]
The Hertz vector for such a ““half-crystal” has been found by Ewald. Itis
Zin — 7,0 L 70
} (3-11)
7, tout) — Z(Z)’

where Z and Z°" are the Hertz vectors inside and outside the crystal. Here the
vectors Z'/) (j = 0, 1, 2) are determined with the help of equations (3:0), (3:1) by the
functions $* given by

S(O) 1 z eQﬂi(bh,l‘)
m, % (b, +K)2—k§’
Qf o g2milly(t,by) +lp(r, by) +1(x, by)1
NS
— 5 e .
Vo i1, 3(ny —1p) (1 —e72mm) (3-12)
S(Q) 2i -ﬁo 827Ti[l1(l',b1)+l2(l’,b2)+7]2(r,b3)]
== - 2 _2 " .
Vaif 1, D5(m1—15) (1—e2mim2)

S is identical with the expression (3-2) for the infinite lattice.
The constants 7, 7, in (3:12) are the two solutions of the equation

(b, +1,by+yb;+K)2 = 2. (3-13)
These are given by

o 2 = g5 [ (b, @) (b, @)7-+5 (65— 7)1, |

(3-14)
q=104b,+,b,+k. ‘

I consider first the case when either /; or /, or both are different from zero. Writing

k as
k = kb, +k,b,+kyb,,

where — 4 <k, <} (cf. § 5), we see that q cannot be parallel to b,, so that
(b, q)2<¢?b3.

Since k,<< | b; | it follows that £, in (3-14) may be neglected, so that the square root
is imaginary and 7,,, are conjugate complex. In this case for 7, the solution with
positive imaginary part must be used, and for 7, the solution with negative imaginary
part. If such a complex solution is inserted in (3-12) it follows with (3-10) that S
and §? decrease exponentially with the distance from the surface. They represent
only small surface effects and may be neglected.
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Turning to the zero terms of the series SV and §? (i.e. [, = [, = 0) it is found that
the solution (3-14) reduces to

1
N,0= Z—g[~(b3, k) -+ /{(by, k)2-+03(k3—£2)}], for [, =1I,=0. (3-15)

If % = 0, so that k,< £, k, may be neglected again and the solutions 7,, , are again con-
jugate complex, if kK is not parallel to b;. In this case exponentially decreasing ex-
pressions are again obtained. The only exception is when k is parallel to b;. Here I

get from (3-15)

—ktk
Moo :—bzt—_o; for (by, k) = | by | |k | (3-16)

and D12 bs = —K+K,. (3:17)

Inserting these values in (3-12) one obtains with (3-0), (3-1) the Hertz vectors ZV), Z?
corresponding to the zero terms of SV, §?.

; 27i(r, ko)
7 — b piv e ]

271i (r,,, k—ko)
iR, 2 Pie s

Yy b3/€0(1——€ m 0 /- 3) K (3 18)
o= 2mie, ko)

Z(Z) — g~iwt i 2 eZﬂz(rK, k+k0)'J
b3k0(1 e2m(k+ko)/b3) < pK

v

a

Since ky< k, ky< by and (r,, b;) ~ 1 it follows that (r,, K,) < 1. To the first order in
k, the result is

Z(l) _ie——iwt eQm’(r,ko) zK pK
- 2mik/bs ?
) p—iwt ,—2mi(r, ko)
i 3 p, ,
2mik/bs3 *
Ua bsko 1—6 m / 3

72 —

In this case there is indeed an outgoing radiation field. But the effect of this field is
negligible. This may be seen either by calculating the force from Z¥ or by calculating
the energy flow of the outgoing radiation from Z‘® and comparing it with the energy
of the oscillator. If this is calculated by means of (3:6) only values of the magnitude
ky/b; are obtained which can be neglected.

The field of the crystal for k = 0 is, therefore, completely determined by $@ (3-12)
or (3-2), which gives the right solution for our problem for k = 0.

Now only the case k = 0 remains to be considered. For the zero term of the Hertz
vectors Z1, Z? one obtains once more the expression (3-18) and need only put £ = 0.
Butin this case £y/b, in the exponential function of the denominator cannot be neglected.
Expanding this exponential we find, instead of (3-19),

1 evz’wt eZm’(r, ko)

 _
z - 2my, k3 g Pe;
7o 1 g-iot p=2mitr, ko) (3-20)
= Tom. B 2Pe
64-2
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Z‘» represents again an outgoing wave, but the amplitude contains 1/2 and therefore
it cannot be neglected.

Therefore the crystal cannot be considered as being in a stationary state for k = 0;
in order to render it stationary radiation has to be sent to and absorbed by the crystal.
Indeed, residual rays can only be observed by absorption or reflexion measurements,
as the loss of energy of the incident beam. Now it is well known that the boundary
conditions for electromagnetic waves are such that the incident wave is continued in
the interior by the diffracted wave, but this is identical with the mean wave of the
dipoles. This latter has, therefore, to be considered as produced by the incident wave,
i.e. as a given external wave which acts on the particles of the lattice. The interaction
forces of the vibration proper of the lattice are therefore described only by the periodic
terms of the field strength. For this reason one has to cancel the constant term in the expression
(3-2), (3:1), (8:0) of the Hertz vector.

In this way is found the nature of the apparent discontinuity in the spectrum at
k = 0 which has been introduced at the beginning of this paragraph.

4. THE COUPLING COEFFICIENTS OF THE ELECTRODYNAMIC INTERACTION

It is now possible to write down the Hertz vector for all states of vibrations of the
crystal (3-0), (3-1), (8-2). Since K, is small compared to the vectors of the reciprocal
lattice, k, may be neglected in (3-2) except for the zero term b, = (0, 0, 0). Aslong as
k = 0, k, may be neglected also in the zero term, as has just been shown. For k = 0,
on the other hand, the zero term must be omitted. Therefore one finds for §:

1 e27ri(b;,,r)
S = S s
m, % (b,+Kk)
where the dash indicates that for k = 0 the zero term b, = 0 must be omitted.}
Having now determined the Hertz vector one arrives in the same way as in § 1 at

the equation of motion by writing down the expression for the force which is deter-
mined by the Hertz vector

(4-0)

7% =771, (4-1)

where zL is the Hertz vector of the dipole («, /) itself which has to be subtracted. From
(4:1) oné obtains by means of (3-6) the electromagnetic field which is given by (cf.

(8:0), (3:1), (3-2))

. 1.
E. = grad,divZ* —EEZ}ij

0?2 — 02 .
__ it p2mitk,xh 7 Uk —1! sk (r—1l, 2m(k,r,¢/—r,<)} 4
4 ¢ gpkyaxayw ( K)+§ %pkyaxayw ( K)e b ( 2)
K'#K
+ While following closely and in formal identity the derivation of Born and Goeppert-Mayer (1933,

p. 776) it must be emphasized that the dash in Born’s function § means complete omission of the zero
term, irrespective of the value of k.
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N . . s it ) 1 ,e2ﬂi(bh+k, r)
where %(r)= (r)e 4 ="7;?‘);§ W,

P(E) = P~

(4-3)

The terms due to grad div Z%* contain factors (b, +k), (b, +£),, whereas the term due
. 2
to — j—ZZ}{* has the factor % = 47%k3 and can therefore be neglected. The magnetic field

vector, too, can be neglected as it gives only a second order contribution to the force.
From (4-2) one obtains easily the force exerted on the particle (, {) and the equation
of motion

wmeUKx-i‘Z 2 I:z y :l Uk‘y= 0, (4'4)
'y Yy

: re 7 _ 2 . —2mi(k, )
with l:x y :I =e.. l:(?x 3 v (r):lrzr“, e s

Til-elagr o] .

Comparing these electrodynamic expressions with the corresponding electrostatic
ones (2-11) it follows that they are identical, if the function F*(r) is replaced by y*(r).
In order to compare these two functions I take the parameter £ in (2-13) equal to co.
Then F* is given by ‘

(4:5)

1 g2mi(by+k, 1)

PO =, X B

(4-6)

This is identical with the expression (4-3) for ¥*(r), with the exception of the case
k = 0. In this case the divergent zero term in F* is omitted in y*. One finds

YH(r) = FX(r); k=+0,
2mi(k, r) 4-7
YO(r) = lim F’f(r)——;};e—k,z—]; K — o.} 7
k=0 a

Thus for k = 0 the electrostatic derivation is justified which is only natural since the
retardation represented by £, can be neglected. F* (2-9) is defined as a sum of potentials
of point charges. Therefore it satisfies Laplace’s equation

AF* = Ak = 0; K + 0. (4-8)

With (4-5) the following relation follows:

[P P R B R I B (49
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For k = 0 (cf. Born 1923, p. 728), on the other hand, direct differentiation gives

1 e27n(k r) .
Ay0 = limd| pr— L _._2—]_hm AFhy 4T e2m<k=r>] (4-10)
k>0 m, k E—0 Vg
= ilE; k=0
C !
and S [" K:I — g il (4:11)
P X X lg—g v,

This holds also for " = « if one substitutes 0 for ¥ in (4:10). The potential §° satisfies,
therefore, Poisson’s equation, which may be interpreted as the existence of a uniform
charge distribution of amount —1 per unit cell.

In the case of cubical symmetry it follows that

¢ dme, e, 4 2
[ :L:O [ ]ko Ev_l
[ =[”] “od-o |
XY di=o X Ydk=0

Then one gets for the coupling force in the equation of motion (4-4)

(4-12)

’re &' 47 dmr
= g I:x x k_UUK’x = “3“%2, P UK’x = ?g/czbw

which is the well-known expression for the Lorenz-Lorentz force.

C ’
. Kk K7 . .
The question whether the sum Y |:x x] is equal to zero or to 47 e’f" , 1.e. whether
X

a
the potential from which the coupling coefficients are derived satisfies Poisson’s or

Laplace’s equation has been discussed before, but has never been cleared in a satis-
factory way. The definite result of the foregoing derivation is that it proves without
artificial assumptions the apparent discontinuity (cf. p. 519) of this potential as function
of the wave vector k. Lyddane and Herzfeld (1938) agree with Born that for k = 0

k K’ . €, . .
the sum 3 [x x] is really equal to 417%’5 and thus derived from a potential corre-
x k=0

a
sponding to a uniform charge distribution —1 per cell, but in order to explain the

different properties of the potential for k == 0 they assume that for all other wave-
lengths one has to perform a displacement of the uniform charge distribution, which
gives rise to surface charges which just compensate the term 4/v, so that the above sum
is equal to zero. This argument is not only rather artificial, since the displaced uniform
charge —1 has no physical significance, but leads also to consequences which are only
partly correct. They obtain two different frequencies for the residual rays, one for
“transverse’” waves which corresponds to the value hitherto found—and also in this
paper—and one for “longitudinal” waves.
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5. THE couPLING COEFFICIENTS OF THE NaCl LATTICE

In the case of NaCl there are two different particles in the cell (s = 2); but, as far as
symmetry is concerned, it may be regarded as a simple lattice, i.e. the Na sites are
entirely equivalent to the Cl sites. Therefore, to any lattice vector ré,. there corresponds
another one of the same magnitude and in the opposite direction. The same is true for
the reciprocal lattice. For this reason the coupling coefficients are all real, as may
be seen from (1:10); in this sum all imaginary terms cancel so that

K k'
=2 (Pte)sycos2n(k, rl.),
I:x y] i (5.0)
[ z (@Le) ey cos 2m(K, a');

and since r,,. = —T,,, I:K K:| = [K 'K:| . (5-1)
Xy XY

From (4-5) it can be seen that the coeflicients are entirely symmetrical in x and y so

that ’ ’
Lo l-65) (52

Furthermore, the NaCl lattice is entirely symmetrical in Na and CI (if the repulsive
forces between all but nearest neighbours are neglected) ; therefore

[1 1] _ |:2 2]. (5.3)
Xy Xy
The cell vectors of the NaCl lattice are
a,=7,(0,1,1), ry =—r;,=r(1,11),
a,=r,(1,0,1), v,=2r3, (5-4)
a; =r,(1,1,0),

where 7, is the distance between nearest neighbours or the lattice constant and v, the
volume of the cell. A lattice vector is therefore of the form

al = ro(ly+1y, s+, L+1y) = 10(L, 1y, L), 2 I, even,
* 55
rhy = ro(ly+ L+ 1, L+ 41, [+ 1+ 1) = ry(m,, m,, m,), m, Odd-} (5:5)

Here I, ,, [5 cover all integer numbers. Therefore, [, /,, I, cover all sets of integers for

which [, 41, 41, = X [, is even and m,, m,, m, cover all sets of integers for which ¥ m, is
odd. ) ’
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The reciprocal vectors are given by (1-13). With (5-4) they are
1

b1 :2—7.0(_13 1, 1)9
1

b, =5 (L —1,1), (5-6)
1

b3:§'r'0(la 1, ""1),

so that a vector in the reciprocal lattice is given by

b, =5 (}z Fhy—hy, by by —hyy By -y —hy)

(/z hy k), h,h, h, all odd or all even, (5-7)

x) "y vz %) 'Yy

where A, h,, h, cover all sets of integers which are either all odd or all even, i.e. the
reciprocal lattice is body-centred, as is well known.
The sums (2-15) representing the coupling coefficients may now be written in dimen-

sionless form by writing ¢/r, for the parameter £ and substituting for the wave vector k:

1
k = kb, +k,by+ksby = —(q,, 9,5 ¢.),
101 T RgDy A3 D3 270(9 9y q.) } (5-8)
q = kotks—ky, g, = ks +h —ks, q, :k1+k2—k3,
v,°T1 1
T ot
. (59)
v,T1 2 _c g
? [x y — Yay T xy)
htq) (hy+q,) , = :
where G}yl - 4712( (h—|—<q)2 y (h+q)
(h+q) (hy+4q,) 260
Gi2 = 47T§—(—H+—q)*_”— T ha)? cog n(h+-h, 1),

i, =23 1108, 4 eos nta, 1),

0= 35D, =

4 e 6 7 3y(el
R ‘”}3 ),

v(el) :1—7271 f:le—?dg,

=11 =J(B+1241).
These equations only hold for £ < (0, 0, 0).
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For some wave vectors k the calculation can be reduced appreciably by considering
the cubic symmetry.
(1) ¢,= g, = q.. This case is symmetrical in x, y, z. Therefore from (4-9) it follows

that
re « re « ¢
=TT =0 ama-u (511

(2) ¢,=0 (or ¢, = 1)*. In this case in G,, the two terms (A, ,, 2,) and (A, h,, —£,)

Yy Yz % by
just cancel and G, = 0. Putting ¢ = o0, H,, also vanishes (the coupling coefficients are,

of course, independent of ¢). Therefore

LI-TA-LA-L-0 e o

(3) Consider two wave vectors which differ only in the sign of the z-component.
In this case put ¢ = 0 so that only a contribution from H_* is obtained (cf. (5-10)a); it
follows that

SR PV e R o

[x zle X Z kr, X Z k_ x 2zl

11 [1 2] “_[ :l o -
I: —_[ :Ik', Yy z k_— q"” q!/_— qy> 9, = —4q,

whereas all other coefficients are the same for both wave vectors.
(4) Consider two wave vectors K, k” which are identical apart from an interchange
of the components of ¢,, ¢,. Taking again ¢ = 0, then

117 11 12 _[1 2]

[x x:lk—[y y]k»’ [x x]k_ Yy

11 11 12 , ,
[y y]k: [x x]k" I:y y:lkz[ ]k' =l 6= 170

all the other coeflicients being equal.

(5-13)

(5'14)

* This can also be seen by considering the function H,, only (¢ =0). For x % z we find developing

cos ﬂ(q’ ) = Ccos ﬂ(Qxlx + qy ly + qzlz)’

(5-10)a

H =—2Zg(l) B s1n7rqxl sinm q,1, cosm g, 1.

All other terms arising from the development of cos 77(q, 1) cancel because of symmetry (I,, [, assume
the same positive and negative values).
We see at once from (5-10)a that for ¢, =1 (or ¢, =0), H,, =0 and therefore

¢ ¢ 0
[1 1:|= [‘1 2]= I:l 1:|=C|:1 2 0, for g, = 1.
x z Xz Yz Yz

It is not surprising that these bracket coefficients vanish, for in the reciprocal lattice the point
given by the position vector ¢, = ¢, = 0, ¢, =1 is symmetrically situated with respect to all lattice points.
If ¢,, ¢, & 0 the symmetry in the z-direction is not destroyed, and it will be seen from G,, (¢ = o) that
the coefficients in question vanish on account of this symmetry.

Vor. 238.—A 65
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From the condition of the cyclic lattice (1-15), (1-16) it follows that &, k,, £, range
from 0 to 1. In order to obtain a fair survey of the coeflicients as functions of the wave
vector, I divide this range into tenths and consider the vector components

k=0, (b1 par py integers). (515)

In order to make full use of the symmetric properties of the coefficients it is more
convenient to consider the region of allowed wave vectors in the g,, g,, ¢, space. Since
the reciprocal lattice is of the body-centred type this region is of the form of an octa-
hedron with its vertices cut off (cf. for example, Sommerfeld and Bethe 1933, figure 27).
The boundaries are given by the equations

Gtq, 0. =+%; ¢=+1, ¢ =41, ¢ =+L (5:16)

In view of the properties (5:13) just considered one may restrict the calculation to
positive values of g, ¢,, ¢.. All other coeflicients may then be obtained from (5:13).
Furthermore, in view of (5-14) the calculation can be restricted to sets of numbers such
that ¢,.>¢q,>¢,. Thus only those values of q such that

0<yg,<q,<¢,<1,
LS 73 | (5-17)
. gx—{—qy—*—ng?? J
need be considered.
It will be convenient to introduce as in (5:15) whole numbers f, p,, o, given by
(57)
be=batPs—Dv Py =PstPr—D2 D= D1FDa—bs (518)

the sets of whole numbers f,, p,, p, are either all odd or all even and satisfy the con-
ditions
0<p.<p,<p, <10,
bspysp } (519)

bt pytp.<15.

There are forty-eight sets of numbers of this type.

I could, of course, also divide the range in the g,, ¢,, ¢, space into tenths. But this
would give more sets of numbers ,, p,, p,, i.e. a closer division of our range which is
not necessary for our purposes. If, on the other hand, I divided it into fifths, it would
give too small a choice.

6. THE REPULSIVE FORCES

Apart from the Coulomb forces there are other forces present in an ionic lattice,
mainly the repulsive forces which prevent the lattice from collapsing, and also the van
der Waals forces. Let us collect all those other forces in a potential v(r). These forces
decrease very rapidly with the distance, with the exception of the Van der Waals forces
(cf. (Lennard-)Jones and Ingham 1925). But,as Born and Mayer (1932) have shown,
these forces form only a very small percentage of the potential v(r), so that it is sufficient
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to consider only the interaction between nearest neighbours. In the NaCl lattice each
ion is surrounded by six nearest neighbours so that the energy per cell is given by

32
3P, = ““a+6v(70)a (6-0)

where « is the Madelung constant and 7, the distance between nearest neighbours.
The first two derivatives of (r) can be obtained from the condition of equilibrium
and the compressibility; putting for abbreviation

dv(r) e )
L], ~a?

(6-1)
2 2
o
ar* 1., 27
the condition of equilibrium is
d}9P, e . el
TR
20
so that B = —5 = 1-165, (6-2)
using Madelung’s constant « = 1-7476.
The compressibility is given by
1 1 ,d*i® 1 d?1® 1 ¢? ¢?
T T 42 20= 2.0= — Q0 jo;A_ :23
k00,0 d3  18r, drd 1870[ ar3+2 il YaT %0
12r¢
so that A= 7§°+%a. (6-3)

A depends, of course, on the particular crystal considered. Here NaCl has been chosen
where x = 4:16 x 10712 cm.?/dyne, 7y = 2:814 x 1078 cm. With ¢ = 4-8 x 10710 e.s.u.,
I get

A =10-18 (for NaCl). (6-4)

Consider now that part of the coupling coefficients which is due to the repulsive forces.
This part is given by (1-10), (1-12),

Rrx ' ik, rl,
(5] =3 b eemsrio (6-5)

In the case k' + « the sum (6-5) extends over the six nearest neighbours given by the

vectors
ro(+1, 0, 0),

ro( 0, £1, 0), (6-6)

ro( 0, 0, +1).
65-2
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The differentiation in (6-5) yields with the definition (6-1)

R[ } ]. 32 x12y]2+B(8 . yZZ):, e2m’(k,!'12)‘ (6'7)

(rf2)? (rf2)?

The sum over the vectors (6-6) gives

Rl 2 T A " B L ;
x gyl ™ 0, x=y; oy lg2 = A cos 2k, 7o+ B(cos 2mk, 1o+ cos 2nk, 7).
(6:8)
In the case k’ = k only the zero term in (6-5) remains, all other terms representing
interaction between distant ions:

s = 020 (69)

This expression is independent of k and can therefore be calculated from (1-11)

rr1 1 Rr1 2
Lo L Lf
11
so that [ :I_o X+ [ —(4+2B). (610)

If for k the dimensionless vector q given by (5-8) is introduced, (6-8) and (6-10) may
be written

RI:I 1]_R|:12 o '
xyl eyl 7

) (6:11)
[ :l—‘;— (A+2B), Ll 2] = A cos mq,+ B(cos mg,+cos 7).

7. THE ELASTIC CONSTANTS

Born (1923) has shown that the coupling coeflicients in the equation of motion are
connected with the elastic constants.
The latter are defined by Born (1923, p. 547)

[xyﬁg] z z (¢KK )xy KK yKK (7.0)

aKK

The elastic constants in the usual notat’on are related to the bracket symbols (7-0)
for a crystal of cubic symmetry as follows:

[xxxx] = ¢;q,

[xxyy] = ClZa[ (7-1)
[xyxy] = ¢4y
The Cauchy relation Clg = C44 (7-2)
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holds; this is a consequence of the assumption of central forces in a simple lattice with
central symmetry about every particle.

One finds exactly the expressions (7-0) if the coupling coefficients (1:10) are developed
in a power series of the inverse wave-length; with 27k = 78, where s is a unit vector,

one finds
K © 1O e O K K7?
I:x y]_[x y] +[x y:l T+[x y] T (7:3)
R z
where | x y | — Zl: K¢K’K)xya
e KD z z
| x y = 2; (S’ rK'K) (¢K’K)xy: ; (74)
L 1 ! 1 1 7 7l
x - _—fz (S’ rKK) (¢K’K)xy :_72_2 757X KyKK(¢KK)
| X Y l I %y
Comparing (7-3) with (7-0) one notices that
i © K@
~0, 3 55 byl = 5[5 0] (1)
%7 k' LX Y

c @
In order to calculate I:I; ; ] , develop the expressions (5-9), (5:10) for the coupling

coefficients of the NaCl lattice. The result is
ST )=l T T

O A (LA I R AR )

06]-2l{m s 28]

O3) 2= (s em 75} ]

2z 30

+s2|: 2 x:(h) + (f

(7-6)
where 2 2 /2 p2 4 p2p2
"2"2 h2h; n?(h2hy k2 mt hEh /z2 m?
[4 }l4 /Z2+ (hz _Z)+64 y+3 ( hz_e—zllxz)]. (7’7)
Crg k@
Similarly one obtains for [x y]
c @) cr1 17 ¢ @
2ol AL T
ke LX Y XY
e2 1 2 2 mﬁ m2
=2 oo [ A5k + 360 F-Sem ], (1
0 m
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_ me pRpr R 2 (22 7 22
where (k) — ¢ [87ly ot L 1y 2T (/,22 %(hgmg)) ?”"47“]' (7-9)

Comparing (7-6), (7-8) with (7-5) one finds that part of the elastic constants which
is due to the Cooulomb forces:

A A

OF

A

OF

e (2 [2 m?
ey = Lever] = - 2300) + 3 SO +e(0) 3 | S ] fom) +-glm) T | me),
alo T l m m
¢ c ¢ (2 b D)ol i 12 ml,
o1y = Pryy] = == 2, (R) + 2| () +8(D) 3 |G —2 | S(m) +-g(m) 5 |mgh, - (7:10)
VTl 7 P m
212 m2mz
= Ty = (T30 + 360 % — S gl S,
m
That part of the elastlc constants which is due to the repulsive forces can be calcu-
lated in the same way. From (6-8), (6:10) one has
R /142 Rl 1712 Ry 212 e2 :
—9 A __B(s21 2
=100 { R e I B e e IO
(7-11)
R (2)
A ]
kK’ 2 4 2 p
e e
SO that 11 == " 7’0 2 5 RCIQ - va—ré—g 3 RC44 = 0. (7'12)
The Cauchy relation need not be satisfied for the individual contributions of the
Coulomb and repulsive forces, but only for the sum, if the condition of equilibrium
is taken into account.®
The numerical calculation gives
¢ 256 Koy — 500 —253°
€y = — €11 = 5°09-—; €1 = 253
11 = O 49 11 2 39 11 9 4:
c e, — e
2
* The reason is seen from the dlrect derivation of the elastic constants; they are given by Born
(1923, p. 548)
[xyfg] 9. 2 2 [3 PKK/ KK’yKK/+QKK/xKK'yKK’xKK/yKK']a
d¢ y 1 d {1dp.
L KK 1 — KK
where PKK,-|: ( I )]r“ Kxr = [r dr( & )]r“
The equilibrium condition leads to the dlsappearance of the term P.,,, if ¢ is the total potential, and
[xyxy] = 5~ 2 2 Q'cicr Xrr Yiewr Fcrr Yicur
is symmetric in all the four indices x, y, %, 7 and can be written [xyxy] = [xxyy]. But this does not
hold for the Coulomb part of the potential separately.
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The value %, calculated by Madelung’s method has been given by Born (1920);
2

he finds the value ~2-55—5—rz. Since the numerical calculations are confined to an
0

accuracy of 1 9%, the two values agree with each other.
In table 1 the results are compared with the experimental values.* The units are
dynes/cm.2 x 1011,

TABLE 1
Exp. Theor.
. 495 465
P 14 128
ey +2¢4) 2-58 .
e 0 2.40) 240
G4 1-28 1-28

The theoretical value of the reciprocal compressibility (2-40 x 10!! dynes/cm.2)
satisfies, of course, exactly the relation §= ¢11+2¢,, with the theoretical values of ¢,

and ¢;,, and coincides with the experimental value since this value has been used for
the determination of the constant 4. But it differs from the experimental elasticity
constants. This is an incongruity not of the theory, but of the experimental results. In
fact, the measurements of ¢;, are rather inaccurate (it has been measured only within
10 9, error). Therefore the experimental values agree with the theoretical values within
the limits of error.

The perfect agreement of the experimental and theoretical values of ¢,, are a strong
confirmation of the theory; for, the theoretical value of ¢,, does not depend on 4 (or «),
but only on the lattice constant.

8. NUMERICAL RESULTS FOR THE COUPLING COEFFICIENTS

For the purpose of numerical calculation of the coupling coefficients the adjustable
parameter ¢ in equation (5-10) has been chosen equal to 1. All terms smaller than 1 9
of the largest term in each series were neglected. Since the series in question converge
rapidly this gives an accuracy of 1 %—29%,.

All coefficients have been calculated independently from each other so that the
equations (4-9) could be used to check the results. These equations were satisfied in
each case within 1 %,. The only exceptions are p = (6, 6, 0) and p = (6, 6,2). In these
cases the final coefficients are the differences between two nearly equal quantities and
therefore the error is larger than 1%, but as in this case the electrical part is much
smaller than the repulsive part of the coefficients, the total error is again not larger
than 19, so that it is not worth while to increase the accuracy of the electric part.

* The elastic constants have been calculated from the elastic moduli 4;; given in Landolt-Bérnstein,
1935, 3 Erg.Bd. 1, 74.
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Apart from this, each coefficient has been checked independently either by calcu-
lating the coeflicients belonging to the wave vector (g,, ,, — ¢,) which involves a different
order in the evaluation of the terms of the series or by repeating the calculation with
a different value of e. Each coeflicient has therefore been calculated twice by means
of numerically different series. The agreement in each case was within 1 9.

The results are given in tables 2, 24, which contain that part of the coupling coeffi-
cients which is due to the Coulomb force. The values are given in units of ¢2/y, and
depend therefore only on the lattice structure, but not on the volume. In the first

1
column the wave vector of the mode of vibration is given in units of 1027, ; the numbers
Ty

describing the wave vector are identical with the components p,, p,, p, introduced in
(5-19). Table 3 contains the total coupling coefficients for NaCl, obtained by summing
the contributions of the Coulomb force and the repulsive force (cf. (1-12)). The latter
contribution, of course, depends on the properties of the Na and Cl ions. The coeffi-
cients are given again in units of ¢2/v,.

R ’
Since the coefficients l:l; ;:I = 0; x == y (cf. (6-8)), the bracket symbols
C[K K’:l B I:K K’]
xyd Lry
are already the total coefficients and therefore table 2a and table 3 represent the whole
set of the coefficients for the equation of motion.

9. EVALUATION OF THE FREQUENCIES

In the case of NaCl (s = 2) the equations of motion for any given wave vector k
constitute a system of six homogeneous equations for the amplitudes U, of the vibration.
For a non-trivial solution the determinant of the system must vanish. This leads to the
secular equation for the frequencies:

[\
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TABLE 2

1 17w, o1 17w, 1 17v, °r1 27v, °r1 270, 1 27w,
be by P: I:xx &2 [yy &2 I:zz ¢? [xx ¢? y y|e? [zz e?
10 5 0O* —0-785 +1-594 —0-785 +10-981 0 —10-981
10 4 0 —1-812 +1-640 +0-181 +12-166 —2-313 — 9-856
10 2 2 —2-938 +1-468 +1-468 +13-448 —6-725 — 6:725
10 2 0 —3-606 +1-961 +1-638 +14-214 —6-071 — 8142
10 0 O —4-330 +2-160 +2-160 +15-043 —17-520 — 7-520
9 5 1 —0-714 +1-453 —0-714 +10-530 0 —10-530
9 3 3 —1-583 +0-795 +0-795 +11-513 —5-758 — 5758
9 3 1 —2-699 +1-663 +0-987 +12-860 —4-439 — 8473
9 11 —4-047 +2-022 - +2-022 +14-430 ~7-214 - 7-214
8 6 0 +0-059 +1-195 —1:298 + 8-549 +3-003 —11-548
8 4 2 —1-471 +1-142 +0-339 +10-375 —-2-375 — 8:003
8 4 0 —1-975 +1-450 +0-535 +11-079 —1-692 — 9:391
8 2 2 —3-184 +1-595 +1-595 +12-524 —6-263 — 6-263
8 2 0 —-3-911 +2-031 +1-882 +13-402 —5633 — 7779
8 0 0 —4-738 +2-366 +2-366 +14-386 —7-193 — 7-193
7 5 3 —0-286 +0-571 —0-286 + 6-838 0 — 6-838
7 5 1 —0-894 +0-846 +0-062 + 8:148 +1-342 — 9479
7 3 3 —1-859 +0-932 +0-932 + 9-281 —4-642 — 4-642
7 3 1 —3-049 +1-527 +1-526 +10-970 —3-368 — 7-605
7 1 1 —4-699 +2-350 +2-350 +13-021 —6-512 — 6-512
6 6 2 +0-140 +0-140 —0-274 + 4-312 +4-312 — 8615
6 6 0 +0-017 +0-017 —~0-022 + 5004 +5-004 — 9-997
6 4 4 —0-552 +0-279 +0-279 + 4-933 —2-470 — 2470
6 4 2 —~1-594 +0-621 +0-976 + 7-120 —0-548 — 6-566
6 4 0 —2-090 +0-684 +1-428 + 8-:025 +0-192 — 8201
6 2 2 —3-594 +1-803 +1-803 + 9-933 —4-964 — 4-964
6 2 0 —4-563 +2-066 +2-500 +11-200 ~4-360 — 6-844
6 0 O —5-782 +2-891 +2-891 +12-683 —6-344 — 6-344
5 5 5 0 0 0 0 0 0
5 5 3 —0-228 —0-228 +0-450 + 2-379 +2-379 — 4761
5 5 1 —0-600 —0-600 +1-214 + 3-929 +3-929 — 7-845
5 3 3 —1-659 +0-836 +0-836 + 5252 —2-628 — 2-628
5 3 1 —3-050 +0-840 +2-224 + 7-467 —1-198 — 6-267
5 1 1 —5-526 +2-764 +2-764 +10-591 —5-299 — 5299
4 4 4 0 0 0 0 0 0
4 4 2 —0-751 —0-751 +1-502 + 2-351 +2-351 — 4702
4 4 0 —1:220 —1-220 +2-455 + 3-406 + 3-406 — 6-799
4 2 2 —3-115 +1-561 +1-561 + 5-892 —2-945 — 2:945
4 2 0 —4-642 +1-414 +3-228 + 7-850 —2-137 — 5717
4 0 0 —6-987 +3-512 +3-512 +10-623 —5-313 — 5313
3 3 3 0 0 0 0 0 0
3 31 —1-352 —1-352 +2-706 + 2-407 +2-407 — 4-813
3 11 —5-377 +2-684 +2-684 + 7-282 —3-641 — 3-641
2 2 2 0 0 0 0 0 0
2 2 0 —1-893 —1-893 +3-796 + 2-421 +2-421 — 4-820
20 0 —8-013 +3-997 +3-997 + 8994 —4-491 — 4-491
1 11 0 0 0 0 0 0
0 0 0 — — — — — —

* The vector (10, 5, 0) is really not a vector within our choice. I have, however, considered it,
since it is one of the corner points of our phase space.

Vor. 238.—A 66
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TABLE 2a
117y, 1 l:lva 1 l:lva 1 Z]z)a 1 27y, 1 27w,
T A N 1 R et ] I D B ]
10 5 0 0 0 0 0 0 0
10 4 0 0 0 0 0 0 0
10 2 2 0 0 —1-038 0 0 —0-393
10 2 O 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
9 5 1 —1:009 —0:322 —1-009 -+0-438 0 —0-438
9 3 3 —0-856 —0-856 —2-099 +0-251 +0-251 —0-856
9 3 1 —0-883 —0-335 —0-762 +0-450 +0:120 —0:267
9 1 1 —0-356 —0-356 --0:281 +0-197 +0-197 —0-083
8 6 0 —1-796 0 0 +0-803 0 0
8 4 2 —1-946 —1-201 —1:815 +0-810 +0-238 —0-570
8 4 0 —1-985 0 0 +1:050 0 0
8 2 2 —1-288 —1:288 —1:077 +0-634 +0-634 —0-244
8 2 0 —1-344 0 0 +0-793 0 0
8 0 0 0 0 0 0 0 0
7 5 3 —2-810 —2-303 —2-810 +0-742 0 —0-742
7 5 1 —2-868 —0-870 —1:030 +1-423 +0-075 —0-191
7 3 3 —2-422 —2:422 —2-190 +0-918 +0-918 —0-308
7 38 1 —2-620 —0-974 —0-829 +1-522 +0-434 —0-051
7 1 1 —1-093 —1-093 —0-320 +0-688 +0-688 +0-006
6 6 2 —3-177 —1-937 —1-937 +1:293 —0-172 —0:172
6 6 0 —3:234 0 0 +1-697 0 0
6 4 4 —3-299 —3-299 —3-205 +0-694 +0-694 —0-203
6 4 2 —3-606 —2-145 —1-588 + 1-866 +0-693 +0-116
6 4 0 —3-806 0 0 +2-346 0 0
6 2 2 —2-546 —2-546 —1-291 +1:532 +1-532 +0-242
6 2 0 —2:772 0 0 +1-911 0 0
6 0 0 0 0 0 0 0 0
5 5 5 —3-615 —3-615 —3-615 0 0 0
5 5 3 —3-833 —2-980 —2-980 +1:506 +0-436 +0-436
5 5 1 —4-202 —1:174 —1-174 +2-510 +0-276 +0:276
5 3 3 —3-582 —3-582 —2:642 +1-853 +1-853 +0-794
5 3 1 —4-273 —1-546 —1-098 +2-974 +0911 +0-439
5 1 1 —1-963 —1-963 —0-481 +1-483 +1-483 —0-236
4 4 4 —3-668 —3-668 —3:668 +1-330 +1:330 +1-330
4 4 2 —4-560 —2-590 —2:590 +2-932 +1-259 +1-259
4 4 0 —5-088 0 0 +3-695 0 0
4 2 2 —3:720 —3-720 —2-034 +2-760 +2-760 +1-270
4 2 0 —4-464 0 0 +3-637 0 0
4 0 0 0 0 0 0 0 0
3 3 3 —3-810 —3-810 —3-810 +2:511 +2-511 +2-511
3 3 1 —5:363 —1-872 —1-872 +4-359 +1-398 +1:398
311 —3-243 —3:243 —1-111 +2-869 +2:869 +0-937
2 2 2 —3-986 —3-986 —3-986 +3-421 +3:421 +3-421
2 2 0 —6-038 0 0 +5-531 0 0
2 0 0 0 0 0 0 0 0
1 11 —4-132 —4-132 —4-132 +3-993 +3-993 +3-993
0 0 0 0 0 0 0 0 0
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TABLE 3
1179, 117, 117y 1 270, 1270, 1270,
by by P [xx ¢? l___y y:le2 [zz [xx ¢? [yy ¢ I:z z“_le2
10 5 0 — 8635 —6-256 — 8635 — 0-364 0 +0-364
10 4 0 —~ 9-662 —6-210 —17-669 + 0-461 +0-833 +1-129
10 2 2 —10-788 - —6-382 —6-382 + 1-383 +1-734 +1-734
10 2 0 —11-456 —5-889 —6-212 + 1927 +2-165 +2-261
10 0 O —12-180 —5-690 —5690 + 2533 +2-660 +2-660
9 5 1 — 8:564 —6-397 —8:564 — 0-260 0 +0-260
9 3 3 — 9:433 —17-055 —7-055 + 0-461 +0-649 +0-649
9 3 1 —10-549 —6-187 —6-863 + 1-385 +1-545 +1-632
9 11 —11-897 —5-828 —5-828 + 2-532 +2-468 +2-468
8 6 0 — 7791 —6-655 —9-148 — 0-492 —0-366 —0-066
8 4 2 - 9321 —6-708 —17-511 + 0-837 +0-771 +0-816
8 4 0 — 9-825 —6-400 —17-315 + 1-318 +1-232 +1-372
8 2 2 —~11-034 —6-255 —6-255 + 2-403 +1-973 +1-973
8 2 0 —11-761 —5-189 —5-968 + 3-059 +2-380 +2-401
8 0 O —12-588 —5-484 —5484 + 3-820 +2-764 +2-764
7 5 3 — 8136 —-7-279 —8-136 + 0-169 0 —0-169
7 5 1 — 8744 —7-004 —7-788 + 1-056 +0-919 +0-888
7 3 3 - 9709 —6-918 —6-918 + 1-927 +1-342 +1-342
7 31 —10-899 —6-323 —6-324 + 3-193 +2-193 +2-077
7 11 —12-549 —5-500 —5-500 + 4-821 +2-747 +2-747
6 6 2 — 7710 —17-710 —8-124 + 0-583 +0-583 +0-341
6 6 0 — 7-833 —7-833 —7-872 + 1-053 +1-053 +0-903
6 4 4 — 8:402 —17:571 —7:571 + 1-067 +0-676 +0-676
6 4 2 — 9444 —17-229 —6-874 + 2672 +2-015 +1-670
6 4 0 — 9940 —7-166 —6-422 + 3:354 +2-533 +1-979
6 2 2 —11-444 —~6-047 —6-047 + 4-902 +2-689 +2-689
6 2 0 —12-413 —5-784 —5-350 + 5947 +3:071 +2-753
6 0 0 —13-632 —4-959 —4-959 + 7-207 +3-031 +3-031
5 5 5 — 7-850 —17-850 —17-850 0 0 0

5 5 3 — 8078 —8-078 —17-400 + 1-694 +1-694 +1-223
5 5 1 — 8450 —8-450 —6-636 + 2-821 +2-821 +1-837
5 3 3 — 9509 —7-014 —17-014 + 3-882 +2-671 +2:671
5 3 1 —10-900 —17-010 —5-626 + 5683 +3-678 +2:730
5 1 1 —13-376 —5-086 —5-086 + 8375 +3-275 +3-275
4 4 4 — 7-850 —7-850 —7-850 + 2-426 +2-426 +2-426
4 4 2 — 8601 —8:601 —6-348 + 4195 +4-195 +2-814
4 4 0 — 9070 —9:070 —5:395 + 5027 +5-027 +2-661
{ 4 2 2 —10-965 —6-289 —6-289 + 7-153 +3-989 +3-989
4 2 0 —12-492 —6-436 —4-622 + 8:889 +4-574 +3-161
4 0 0 —14-837 —4-338 —4-338 +11-439 +3-342 +3:342
3 3 3 — 7-850 —17-850 —7-850 + 4-614 +4-614 +4-614
3 31 — 9-202 —9-202 —5-144 + 6-598 +6-598 +3-499
3 11 —13-227 —5-166 —5-166 +11-050 +4-248 +4-248
2 2 2 — 7-850 —17-850 —17-850 + 6-351 +6-351 +6-351
2 20 — 9743 —9-743 —4-054 + 8:550 +8-550 +3-475
2 0 0 —15-863 —3-853 —3-853 +14-900 +3:582 +3-582
111 — 7-850 —7-850 —17-850 + 7-466 +7-466 +7-466

0 0 0 — — — — — —
66-2
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Kk K 1 k K
Here e ) =Ty o] oy
is introduced so that A= o (9-2)

The determinant is symmetric since

{K K’} . {K' K’
as follows from (5-1), (5-2). ¥y yx

For the calculation of the roots of the equation (9-0) which gives the frequencies
of the crystal I have used a method given by Aitken (1937). (I wish to thank Dr A. C.
Aitken for advising me to use this method, which was a very great help in these calcu-
lations.)

It is, however, not always necessary to consider determinants of the sixth order.
In our choice of wave vectors (#,, p,, p,) the determinant (9-0) splits up very frequently
into determinants of a lower order. Considering all these cases one obtains a satis-
factory survey over the frequency spectrum if the wave vector is described, not with the
help of (p,, p,, p.), but by its components (p;, p,, p3) (cf. (5-18)).

In alarge number of cases the determinant (9-0) can easily be split up into a product
of three determinants.

(1) p= (4 0,0) or p= (0, py, p3); p» = p3. Variation of p,, i.e. of p,, p,, therefore,
means going along the diagonal of the ground plane of the phase space. We have
with (5-12), (5-11), (6-11)

-5, E-69-E -0

I introduce for abbreviation the notation

{1 1} {2 2} {l 2}
a= s b= s = 5
X x X X X x
(9-3)
o PP e R e B e PR P
a = = , b= , = = .
yy l\zz yy \zz yy z z
The determinant can then be written as the product
a—A ¢ a—1 |2 0 0
PR B ERP T (9-4)
with the solutions
e2ra-tb a-+b\?
A, = (w{,z)zzv—a B iA/{(T) —(ab~c2)}:|,
(9-5)

etra +b' a4\t .,
M = (o) = | 5 (57 ) —@v—en)].

a
By inspection of the equation of motion it is easily seen that the first two of these
frequencies correspond to longitudinal waves. The second two give transverse waves.
They have to be counted twice since the corresponding determinant in (9-4) is squared,
giving the two independent directions of polarization of the transverse waves.
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(2) For a wave vector (10, p,, 0) it follows from (5:12), (6-11) that the determinant
splits up into three. The vibrations are in the x, y and z directions. In the case (10, ,, 0)
one has in general three different determinants. Only in the case (10, 5, 0) one has,
because of the symmetry

K K K K -
= cf. table 3 9:6
I:x x]uo,s,m l:z Z](lo, 5,0) ( ) (9-6)

two different determinants, but the frequencies f , have to be counted twice.

The frequencies for the cases (10, 5, 0), (10, 0, 0), (5, 5, 5) and (0, 0, 0) have already
been calculated by Lyddane and Herzfeld. Their values for the electric part of the
coefficients agree with ours, but there is a difference in the constants 4 and B which is
due to the repulsive forces. These authors obtain for 4: 10-606, B: 1-073 (cf. (6:4)).
This is due to the fact that they use the repulsive potential of Born and Mayer (1932)
for the calculation of these constants, thus neglecting the Van der Waals (London)
forces, which are roughly included in our general expression:

(3) P= (bt t.); L =p,=p, of D= /(p1,Paps); P1=ps=ps

Clearly, variation of the p; means moving along the main diagonal of the phase space.
The following identities hold:

L R R
LY-LI-LY -LI-EI-CH e
N NN RN

The secular determinant gives

dtii;l hizfﬂl ﬂ;i;A biz{k o (9-8)

Again two longitudinal and twice two transverse waves are obtained with the fre-

quencies:
Moo= (ol = 2[5l [|(EE) - -]
o= 02 = [ 50+ [|(E5E) - wp—ra)],

PHILOSOPHICAL
TRANSACTIONS
OF

(9:9)
a = a-+2d, o =a—d,
f=b+2e, f=b—e,
y=c¢+2f, Y =c—f
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(4) (b pys 0). The determinant splits up into two, of the fourth and the second
order respectively. The latter characterises a transverse vibration in the z direction.

(6) (b, =P, p.)- The determinant splits up into one of the fourth and one of the
second order. The transverse vibration is perpendicular to the diagonal x = y.

(6) (p,=p, 0). Here the determinant splits up into three. The following coeffi-
cients are equal:

=L (L
S B o A A I
EA-08 L3 -py

All other coefficients vanish. The secular equation is

at+d—A  c+f I

a—d—A  c—f ’
c+f b4e—2A

c—f  b—e—2A

I: 0. (9-11)

Two longitudinal and four transverse waves are obtained with the frequencies

Moo= (o2 =[5 [|(25E) —-m)]),

VgL

= o = [P (4T —er )],

Ll

o =S O @] | (912)

al-

[

a=a-td, o =a—d,
ﬂ=b+€, ﬂ,:baeﬁ
y=ctf, ¥ =it J

The direction of polarization of the transverse waves is the z axis (v4 4) and one of the
diagonals in the xy plane (wf’ ,) respectively.

In general, two of the vibrations will be quasi-longitudinal and four quasi-transverse.
The numerical values of all the frequencies are collected in table 5; I have also plotted
(figures 1-8) the frequencies belonging to the vectors

(D> o D) - from (0, 0, 0) to (0, 5, 5),
» (0,0,0) ,, (5,5,5),

from (0, 1, 1) to (0, 1, 5), from (2, 3, 3) to (2, 3, 6),

» (1,1,1) ,, (1,1,5), » (3,8,8),, (3,38,6),

(2,2,2) , (22,6), » (3,4,4) ,, (3,4,7).
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544 E. W. KELLERMANN ON THE THEORY OF THE

In the figures the vector components are described both in terms of the ,, p,, p, and of
the p,, p,, p3- The units are 10!3 sec.”!. For the longitudinal as well as for the transverse
vibrations the figures show the well-known picture of the “optical” and ‘““acoustic”
branches. It can be seen that the branches of the transverse frequencies in figures 1
and 2 (where those frequencies have to be counted twice (cf. pp. 540, 541)) split up
in the more general case into two branches each.

This degeneration, as shown in figures 1 and 2, is, of course, due to neglecting
higher order terms in the development of the energy (1-5). For the same reason it
must be understood that in those cases where two branches of the frequencies intersect
each other, say for instance two transverse frequency branches, this degeneration would
be removed by taking account of higher terms in the development of the energy. The
cross-point would be dissolved in such a way that the two lower parts of the original
branches would be connected, and the two higher parts as well.

55 551
50 I 50—
~~
4 5F ™~ ~ 451" ™~
™
4-0F >~ 4-0+
N
351 3-5r >
X vir X v5r /
3 20 3 20F N
15_ 145._
10 10
051 0-5}
L L I ) 1 | 1 1
333 334 335 336 (Pl’ﬁzal’s) 344 345 346 347 (D15 D25 15)
333 442 551 660 (py, Py p.) 533 642 751 860 (px, by b2)
——— longitudinal —— transverse ——— longitudinal
Ficure 7. p: (3.3.3) to (3.3.6) Ficure 8. p: (3.4.4) to (3 4.7)

For the case (0, 0, 0) of the residual ray we obtain uniquely the frequency
2] —J [A+QB~—- = 2-86 X 1013 sec.™!

Lyddane and Herzfeld (1938) obtain the same limiting frequency for transverse waves
and beside this a limiting frequency

2
w :J%[A“I‘QB*F%] = 6-02 x 1013 sec. ™!
a

for “longitudinal”” waves. The numerical values here are slightly smaller than those of
Lyddane and Herzfeld due to the different choice of 4, B (cf. p. 541). But, as shown in
§4, one cannot accept this second frequency as one of residual rays which is, therefore,
given in square brackets in table 5.
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VIBRATIONS OF THE SODIUM CHLORIDE LATTICE 545

TaBLE 4. FREQUENCIES OF THE NaCl LATTICE

b by P, 2 W, w3 Wy 233 Wg
10 5 0 343 2-91%* 275 2:35% — ——
10 4 0 363 3:28 2-95 2-91 2-52 2-28
10 2 2 3-88 3:25 3-01 2:94 2-45 1-82
10 2 0 4-03 313 3-:06 3-05 2-02 1-96
10 0 0 4-20 310 3-:09% 1-77% — —
9 5 1 3-60 3-36 2-89 2-89 2-59 2-23
9 3 3 379 3-32 3-:02 275 2:66 1-88
9 3 1 3-90 3-21 3-:02 2-89 241 2-01
9 1 1 4-17 3-13 3:05 3-:05 1-96 1-76
8 6 0 3:52 3-52 2-87 2-84 275 2-03
8 4 2 3-97 3-17 3-06 276 243 1-97
8 4 0 393 3-24 2-98 2-69 2-42 2-16
8 2 2 4-17 3:09 2-96 2:92 2-30 1-75
8 2 0 4-25 3-11 3-00 2-81 1-92 1:70
8§ 0 0 4-38 3-07* 2-99 1-69* —_— —
7 5 3 4-23 3-24 2-79 278 2-40 1-75
7 5 1 4-04 3-23 3-00 2-63 2-40 2-03
7 3 3 4-33 317 2-84 272 2-28 1-78
7 3 1 4-39 3-08 291 272 2-16 1-83
7 1 1 4-57 3-02 3-:00 2-83 1-76 1-60
6 6 2 4-17 3-33 2-96 2-48 2-30 1-92
6 6 0 4-05 3-30 2-89 2:59 2-54 1-96
6 4 4 447 351 2-53 2-51 2-05 1-86
6 4 2 4-52 3-:05 2:92 2-51 2-07 1-93
6 4 0 4-55 313 278 248 2-13 1-93
6 2 2 4-76 2-87 2-83 275 1-94 1-55
6 2 0 4-81 3-04 2-83 2-62 1-65 1-62
6 0 O 4-87 3-01%* 2-59 1-42% — —
5 5 5 4-52 3-64 2-40%* 1-93% — —
5 5 3 4-59 3-36 2-67 2-40 1-93 1-92
5 5 1 4-60 308 2-84 241 2-08 1-92
5 3 3 4-91 2-95 2-68 2:57 1-86 1-61
5 3 1 501 297 2-60 2-52 1-75 1:57
5 1 1 514 3:02 2-83 2-34 1-57 1-08
4 4 4 4-86 3-22 2:50% 1-77% —_ —
4 4 2 5-06 2-83 271 2-49 1-69 1:62
4 4 0 5-09 3-:03 249 2-39 1-69 1-65
4 2 2 5-34 2-81 270 2-26 1-46 1-27
4 2 0 539 2-96 273 205 1-27 1-25
4 0 O 544 2-94% 1-:90 1-03* — —
3 3 3 533 2-65% 248 1-42% —_ -
3 3 1 548 2-90 2:63 2-01 1-30 1-25
3 1 1 5-67 2-88 2-83 1-59 0-96 0-89
2 2 2 571 2-76% 1-67 1-00* —_ —
2 2 0 578 291 275 1-35 0-85 0-79
2 0 0 5-87 2-89% 1-02 0-54%* — —
1 11 594 2-84 % 0-84 0-51%* —_ —
© 0 0  [602] 2-86 000 — — — )

The frequencies belonging to a wave vector are ordered with regard to their absolute magnitude.
The units are 103 sec.—.
* To be counted twice.

Vor. 238.—A 67
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546 E. W. KELLERMANN ON THE THEORY OF THE

10. THE FREQUENCY SPECTRUM

From the frequencies calculated, it is possible to obtain the frequency spectrum
N(v), which is required for many applications. I divide the v scale into a number of
equal intervals Av and count the number of calculated frequencies in each interval.
In order to obtain the spectrum very accurately it is, of course, desirable to choose Av
as small as possible. On the other hand, there is a lower limit for the size of Av. First,
there should be a fair number of frequencies in each interval; secondly, it is obviously
pointless to decrease the interval beyond the accuracy with which the frequencies are

-

15

10

3:02x 1013
6N

AN N S T Y (N NN Y T S S S A EUY S N 9y x 10-13
03 06 09 12 I'5 18 21 24 27130 33 36 3:9 42 45 48 51 54 57 60

21y,

vy residual rays frequency
Ficure 9. Frequency distribution N(v).

calculated. I have chosen dw = 274y = 0-3 x 10'3 sec.”! which corresponds to the
accuracy of our calculation. In that case the average number of frequencies in each
interval is about 14. Therefore, the spectrum obtained is accurate within a possible shift
of some frequencies of not more than 0-3 x 103 sec.”!. Only at the ends of the spectrum
the average number of frequencies per interval is too small as to give this accuracy. In
this way three step-curves have been plotted, each of which is shifted against the other
by a third of an interval 4o in the scale of the w’s. The distribution curve (figure 9) is
the approximation of these graphs by a smooth curve which is normalized so that
the total number of frequencies is 3N,

f N(v) dv = 6N,

where N(v) dv is the number of frequencies between v and v+-dv, and N is Avogadro’s
number.
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VIBRATIONS OF THE SODIUM CHLORIDE LATTICE 547

One recognizes three maxima at 1-8, 2-85, and 4:2 x 10!3 sec.”!. These maxima are
due to the different types of normal modes. I have analysed the frequency spectrum
by drawing separate distribution curves for longitudinal optical (l.0.), longitudinal
acoustic (l.a.), transverse optical (Z.0.), and transverse acoustic (£.a.) waves respectively
(although a strict classification into longitudinal and transverse waves is not always
possible).

The corresponding graph is given in figure 10. The different maxima in the dis-
tribution curve (figure 9) correspond to these four kinds of vibrations; the maxima due
to the longitudinal acoustic and the transverse optical frequencies coincide and give rise
to the large maximum in figure 9 near the frequency of the residual rays.

101

3-:02 x 1013
6N
T

: L H L | ] | i [ L ] I
03 06 09 12 15 1'8 21 24 27130 33 36 39 42 45 48 51 54 57 60

27y x 1013

2mv g

vp: residual rays frequency

Ficure 10. Frequency distribution N(v), analysed.

A more careful consideration of the frequency spectrum will be made in connexion
with its application to the problem of the specific heat, which will follow shortly.*

I am very much indebted to Professor M. Born, who suggested this problem to me,
for his advice on many occasions.

I am also very grateful to Dr K. Fuchs for many suggestions.

The numerical results were obtained with the help of a Muldivo calculating machine.
I wish to thank Professor W. Oliver who kindly allowed me the use of the machine.

* Note added in proof. A slight numerical error has occurred in the computation of the figures 9 and 10.
This, however, does not alter the result appreciably. The correct curves will be published in the paper
on the specific heat.
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548 E. W. KELLERMANN

SUMMARY

According to Born’s treatment of polar crystals, the frequency equation for a vibrating
crystal contains in its coefficients lattice sums which are due to long range Coulomb
forces. Using a method developed by Ewald it has been possible to find a quickly
convergent form of those sums. The general formulae for the coefficients have been
developed and a special application has been made to the case of sodium chloride.
The coeflicients and also the frequencies themselves have been calculated for 48 different
states of vibration of the crystal which are chosen in such a way as to make possible a
fair survey over the whole frequency spectrum of the crystal. It appears that the
purely electrostatic derivation of the general formulae for the coefficients does not give
information about the case of the residual rays. This can only be obtained by taking
account of the electrodynamic boundary conditions, namely that the crystal as a whole
must not emit radiation, which leads to the correct solution for the frequency of the
residual rays. The formulae for the coefficients have also been used for the calculation
of the elastic constants of sodium chloride.

REFERENCES

Aitken, A. C. 1937 Proc. R. Soc. Edinb. 57, 269.
Blackman, M. 1935 Proc. Roy. Soc. A, 148, 365.

— 1935 Proc. Roy. Soc. A, 149, 117.

— 1937 Proc. Roy. Soc. A, 159, 416.

— 1937 Proc. Camb. Phil. Soc. 33, 94.

— 1938 Proc. Roy. Soc. A, 164, 62.
Born, M. 1920 Ann. Phys., Lpz., (4), 61, 87.

— 1923 Atomtheorie Des Festen Zustandes, 2nd ed. Leipzig and Berlin.
Born, M. and Goeppert-Mayer, M. 1933 Handbuch der Physik, 2nd ed. 24,

part 2, p. 623. Berlin.

Born, M. and v. Kdrman, Th. 1912 Phys. Z. 13, 297.
Born, M. and Mayer, J. 1932 Z. Phys. 75, 1.

Born, M. and Thompson, J. H. C. 1934 Proc. Roy. Soc. A, 147, 594.
Broch, E. 1937 Proc. Camb. Phil. Soc. 33, 485.

Ewald, P. P. 1921 Ann. Phys., Lpz., (4), 64, 253.

— 1938 Nachr. Ges. Wiss. Gattingen, N.F. 11, 3, 55.
Jones, J. E. and Ingham, A. E. 1925 Proc. Roy. Soc. A, 107, 636.
Lyddane, R. H. and Herzfeld, K. F. 1938 Phys. Rev. 54, 846.
Madelung, E. 1918 Phys. Z. 19, 524.

Sommerfeld, A. and Bethe, H. 1933 Handbuch der Physik, 24, part 2, p. 402.
Thompson, J. H. C. 1935 Proc. Roy. Soc. A, 149, 487.



http://rsta.royalsocietypublishing.org/

